Associate Professor Jana Vukovic

Viertel Snr Medical Research Fellow

School of Biomedical Sciences
Faculty of Medicine

Principal Research Fellow

Queensland Brain Institute
j.vukovic@uq.edu.au
+61 7 336 52818

Overview

The Vukovic laboratory investigates how brain function is sculpted and influenced by the immune system. Specifically, we examine the role of brain’s main resident immune cell population (i.e. microglia), as well as various peripheral immune cells, on learning and memory in mice. We are interested in defining the contribution of immune cells to such higher cognitive tasks, including for neuroinflammatory conditions where learning and memory deficits can occur, e.g. following traumatic brain injury, cancer treatment, and ageing. We have established an array of genetic and pharmacological tools alongside robust behavioural assays to directly probe the function of these immune cells in both the healthy and diseased brain. The ultimate goal of our work is to link cellular and molecular events to altered behaviour, and to harness the brain’s intrinsic regenerative potential for stimulating optimal cognitive function.

A neuroimmunologist, Dr Vukovic received her PhD in 2008 from The University of Western Australia after working on the repair of injured nerve cell connections. She joined QBI in 2009 to work in Professor Perry Bartlett’s laboratory as a Postdoctoral Research Fellow, before being awarded a Queensland Government Smart Futures Fellowship to continue her research into the importance of adult neurogenesis for behaviour and how microglia influence this process in ageing. Dr Vukovic demonstrated that microglia can exert a dual and opposing influence over adult neurogenesis (the birth of new neurons) in the hippocampus under different physiological conditions, namely exercise and ageing, and that signalling through the chemokine receptor, CX3CR1, critically contributes towards this (Vukovic et al., 2012, J Neurosci). Dr Vukovic also generated novel evidence that ongoing neurogenesis in the adult hippocampus is critical for new learning but does not play a role in memory recall (Vukovic et al., 2013, J Neurosci).

Dr Vukovic was awarded an ARC Discovery Early Career Researcher Award (2015-2018) and was jointly appointed as a group leader by the UQ School of Biomedical Sciences (SBMS) and QBI in 2015. She heads the Neuroimmunology and Cognition team investigating the interactions between the brain and the immune system in health and disease.

Currently, the group is working on three main projects:

  1. Identification of microglia-derived molecules that support neuronal survival and stimulate neural stem/progenitor cell expansion
  2. Characterisation of immune cell contribution to changes in neuronal connectivity
  3. Immune cell responses to cancer treatment, and their effect on learning and memory

Research Interests

  • microglia
  • neurogenesis
  • learning and memory
  • neuroinflammation
  • Traumatic Brain Injury
  • Ageing
  • Exercise

Qualifications

  • Doctor of Philosophy, University of Western Australia

Publications

  • Nhu, Nguyen Thi Khanh, Rahman, M. Arifur, Goh, Kelvin G. K., Kim, Seung Jae, Phan, Minh-Duy, Peters, Kate M., Alvarez-Fraga, Laura, Hancock, Steven J., Ravi, Chitra, Kidd, Timothy J., Sullivan, Matthew J., Irvine, Katharine M., Beatson, Scott A., Sweet, Matthew J., Irwin, Adam D., Vukovic, Jana, Ulett, Glen C., Hasnain, Sumaira Z. and Schembri, Mark A. (2024). A convergent evolutionary pathway attenuating cellulose production drives enhanced virulence of some bacteria. Nature Communications, 15 (1) 1441, 1441. doi: 10.1038/s41467-024-45176-4

  • Willis, Emily F., Kim, Seung Jae, Chen, Wei, Nyuydzefe, Melanie, MacDonald, Kelli P.A., Zanin-Zhorov, Alexandra, Ruitenberg, Marc J. and Vukovic, Jana (2024). ROCK2 regulates microglia proliferation and neuronal survival after traumatic brain injury. Brain, Behavior, and Immunity, 117, 181-194. doi: 10.1016/j.bbi.2024.01.004

  • Shaikh, Samreen N., Willis, Emily F., Dierich, Max, Xu, Yi, Stuart, Samuel J. S., Gobe, Glenda C., Bashaw, Abate A., Rawashdeh, Oliver, Kim, Seung Jae and Vukovic, Jana (2023). CSF-1R inhibitor PLX3397 attenuates peripheral and brain chronic GVHD and improves functional outcomes in mice. Journal of Neuroinflammation, 20 (1) 300, 300. doi: 10.1186/s12974-023-02984-7

View all Publications

Supervision

View all Supervision

Available Projects

  • We have demonstrated that microglia (brain's resident immune cells) can exert a dual and opposing influence over adult neurogenesis (the birth of new neurons) in the hippocampus under different physiological conditions, namely exercise, ageing and following brain injury. The ultimate goal of our research is to link cellular and molecular events to altered behaviour, and to harness the regenerative potential of adult neurogenesis through immunomodulation to stimulate optimal cognitive function and treat conditions associated with learning and memory deficits.

View all Available Projects

Publications

Journal Article

Conference Publication

  • Adams, Rachael C., Carter-Cusack, Dylan, Llanes, Genesis T., Hunter, Christopher R., Vinnakota, Janaki Manoja, Ruitenberg, Marc, Vukovic, Jana, Bertolino, Patrick, Chand, Kirat K., Wixey, Julie A., Nayler, Samuel P., Hill, Geoffrey R., Furlan, Scott N., Zeiser, Robert and MacDonald, Kelli P. A. (2023). CSF1R inhibition promotes neuroinflammation and behavioural deficits during graftversus-host disease in mice. 65th Annual Meeting of the American-Society-of-Hematology (ASH), San Diego, CA, United States, 9-12 December 2023. Washington, DC, United States: American Society of Hematology. doi: 10.1182/blood-2023-184841

  • Codd, L., Blackmore, D., Vukovic, J. and Bartlett, P. (2017). Exercise-induced neurogenesis improves recovery in learning after an endothelin-1-induced hippocampal stroke in adult mouse. 27th Annual Scientific Meeting of the Stroke Society of Australasia, Queenstown, New Zealand, 23 – 25 August 2017. London, United Kingdom: Sage Publications. doi: 10.1177/1747493017720548

  • Codd, L., Blackmore, Daniel, Vukovic, Jana and Bartlett, Perry F. (2016). Exercise improves learning and increases neurogenesis after an endothelin-1-induced hippocampal stroke in adult mouse. Asia Pacific Stroke Conference, Brisbane Convention and Exhibition Centre, 14-17 July 2016. BASEL: Karger. doi: 10.1159/000447732

  • Codd, L. N., Vukovic, J., Blackmore, D. G. and Bartlett, P. F. (2015). Exercise improves learning and increases neurogenesis after an endothelin-1-induced hippocampal stroke in adult mouse. Unknown, Unknown, Unknown. London, United Kingdom: Sage Publications.

  • Codd, L., Vukovic, J., Blackmore, D. and Bartlett, P. (2015). Learning and neurogenesis are improved with exercise after an endothelin-1-induced hippocampal stroke in adult mouse. 25th Biennial Meeting of the International-Society-for-Neurochemistry Jointly with the 13th Meeting of the Asian-Pacific-Society-for-Neurochemistry in Conjunction with the 35th Meeting of the Australasian-Neuroscience-Society, Cairns Australia, Aug 23-27, 2015. West Sussex United Kingdom: Wiley-Blackwell.

  • Vukovic, J. and Bartlett, P. (2015). Role of microglia in mediating exercise-induced neurogenesis. 25th Biennial Meeting of the International-Society-for-Neurochemistry Jointly with the 13th Meeting of the Asian-Pacific-Society-for-Neurochemistry in Conjunction with the 35th Meeting of the Australasian-Neuroscience-Society, Cairns Australia, Aug 23-27, 2015. West Sussex United Kingdom: Wiley-Blackwell.

  • Bartlett, Perry, Beare, Richard, Buckley, Rachel F., Egan, Gary, Faggian, Nathan, Galloway, Graham, Keller, Marianne Dorothea, Kurniawan, Nyoman D., Paxinos, George, Petrou, Steven, Reutens, David, Richards, Kay, Vukovic, Jana, Wang, Deming, Watson, Charles, Yang, Steven and Zhao, Peter (2010). A new approach to mouse brain mapping. ISMRM, Stockholm, Sweden, 1-7 May, 2010. New York, NY, U.S.A.: International Society of Magnetic Resonance in Medicine.

  • Grounds, M. D., Shavlakadze, T. and Vukovic, J. (2009). Expression of fibulins 1-5 during myogenesis in vitro and in skeletal muscle regenerating in vivo, and in dystrophic mdx muscles. 14th International Congress of the World-Muscle-Society, Geneva Switzerland, Sep 09-12, 2009. OXFORD: PERGAMON-ELSEVIER SCIENCE LTD. doi: 10.1016/j.nmd.2009.06.102

Grants (Administered at UQ)

PhD and MPhil Supervision

Current Supervision

Completed Supervision

Possible Research Projects

Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.

  • We have demonstrated that microglia (brain's resident immune cells) can exert a dual and opposing influence over adult neurogenesis (the birth of new neurons) in the hippocampus under different physiological conditions, namely exercise, ageing and following brain injury. The ultimate goal of our research is to link cellular and molecular events to altered behaviour, and to harness the regenerative potential of adult neurogenesis through immunomodulation to stimulate optimal cognitive function and treat conditions associated with learning and memory deficits.