Dr Natasha Hungerford

Senior Research Fellow

Centre for Animal Science
Queensland Alliance for Agriculture and Food Innovation
n.hungerford@uq.edu.au
+61 7 344 32473

Overview

Dr Natasha Hungerford is an organic chemist and has extensive experience in natural products chemistry. She is a Senior Research Fellow in the Natural Toxin group within the Centre for Animal Science, Queensland Alliance for Agricultural and Food Innovation (QAAFI) and is based at the Health and Food Sciences Precinct (Cooper's Plains). She joined QAAFI in 2016 and is utilising analytical techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify, evaluate and minimise risks associated with natural toxins found in certain plants. This research focuses on minimising risks to Australian livestock production and to the consumer of certain food products.

Work on honey analysing for toxic pyrrolizidine alkaloids, pesticides, herbicides and PAHs, and mineral and trace elements has been conducted in collaboration with Queensland Health.Work on stingless bee (Meliponini) honey has extended to the analyses of beneficial components in this honey, including novel sugars, leading to projects funded by AgriFutures Australia and Queensland Health, as well as collaborations with Malaysian researchers.

Poisoning of cattle in pastures by Pimelea plant species is a problem in semi-arid regions of Australia and research work funded by Meat and Livestock Australia (MLA) has focussed on minimising the impacts of the Pimelea toxin on Australian cattle production. MLA now fund a collaborative UQ-DAF project that applies novel technologies to progress the industry ambition of a carbon neutral beef industry by 2030.

Dr. Hungerford achieved her PhD in 1998, through the UQ School of Chemistry and Molecular Biosciences, and subsequently conducted postdoctoral research in natural products chemistry and in synthetic organic chemistry, at the University of Oxford, Australian National University, The University of Sydney, Griffith University and Memorial Sloan-Kettering Cancer Center.

Research Interests

  • Slowed delivery of bioactive compounds that reduce enteric methane
    This project involves an interdisciplinary team of researchers from UQ and DAF with the aim of reducing methane emissions from beef cattle. The developed technology will be assessed for the controlled release of active-agents to provide a sustained reduction in enteric methane, applicable to extensive cattle grazing systems.
  • Bioactives in stingless bee honey
    A recent focus has been the analysis of the properties of stingless bee honey, particularly the unique sugar content of these honeys, with this work culminating in grants from AgriFutures Australia and the Malaysian Government International Collaborative Fund (led by Universiti Putra Malaysia). LCMS technologies, ion chromatography, and stable isotope MS techniques have been used in collaboration with Queensland Health with the aims of optimising stingless bee honey bioactive content. This work provided the first report of the atypical disaccharide trehalulose as a major component of the honey of stingless bees (Meliponini) from Australia (2 species), Malaysia (2 species) and Brazil (1 species). Our research has shown that the low GI sugar trehalulose, which is not found significantly in regular honey or as a major component in any other food, is produced by the bees themselves from nectar sucrose. Further studies seek to understand the mechanism of this bee catalysed isomerisation of sucrose to trehalulose.
  • Natural toxins analysis
    Dr Natasha Hungerford's research interests focus on the identification and analysis of natural toxins present in specific plants, with the aim of minimising risks to Australian livestock and to the consumer of certain food products. In particular, the source and identity of pyrrolizidine alkaloid contamination has been assessed by the extraction and identification of pyrrolizidine alkaloids from various plants. Work to mitigate the Pimelea toxin, simplexin, which causes often fatal cattle poisoning in animals grazing inland areas of Australia, is being undertaken. The level of simplexin is being analysed in in vitro rumen trials to monitor and assess the effects of various strategies to breakdown or remove the toxin in the rumen, including microbial degradation, use of adsorbents or biopolymers.
  • Atypical sugars in novel foods
    The presence of significant quantities of the sugar trehalulose in stingless bee honey has prompted a study, funded by Queensland Health, into the levels of atypical sugars in other novel and emerging foods. Public health implications of atypical sugars identified will be examined.

Qualifications

  • Doctor of Philosophy, The University of Queensland
  • Bachelor (Honours) of Science (Advanced), The University of Queensland
  • Bachelor of Science, The University of Queensland

Publications

View all Publications

Grants

View all Grants

Supervision

View all Supervision

Available Projects

  • Methane emissions could be substantially cut through a $7.5-million project to develop slow-release rumen insert technology for cattle containing a gas-reducing bioactive.

    The University of Queensland and Department of Agriculture and Fisheries (DAF) collaboration is being funded by Meat & Livestock Australia (MLA) and the MLA Donor Company Limited, to help producers meet the CN30 target to make the meat industry carbon neutral by 2030. The ability to ensure each animal receives a sustained dose of a methane-reducing active agent over an extended timeframe would be a fantastic win for the beef cattle industry, helping it achieve its goal to reduce methane emissions – particularly in cattle grazing extensive pastures.

    This is a large multdisciplinary project and there is opportunity for PhD candidates with either an animal science or analytical chemistry background to be part of this biotechnology project.

View all Available Projects

Publications

Featured Publications

Book

Journal Article

Conference Publication

Other Outputs

Grants (Administered at UQ)

PhD and MPhil Supervision

Current Supervision

Possible Research Projects

Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.

  • Methane emissions could be substantially cut through a $7.5-million project to develop slow-release rumen insert technology for cattle containing a gas-reducing bioactive.

    The University of Queensland and Department of Agriculture and Fisheries (DAF) collaboration is being funded by Meat & Livestock Australia (MLA) and the MLA Donor Company Limited, to help producers meet the CN30 target to make the meat industry carbon neutral by 2030. The ability to ensure each animal receives a sustained dose of a methane-reducing active agent over an extended timeframe would be a fantastic win for the beef cattle industry, helping it achieve its goal to reduce methane emissions – particularly in cattle grazing extensive pastures.

    This is a large multdisciplinary project and there is opportunity for PhD candidates with either an animal science or analytical chemistry background to be part of this biotechnology project.