Dr Kayvan Etebari

Senior Lecturer

School of Agriculture and Food Sustainability
Faculty of Science
k.etebari@uq.edu.au
+61 7 54601 479

Overview

I am an entomologist with a research interest focused on studying host-pathogen interactions and discovering insect-specific viruses. I have investigated gene expression and the role of small non-coding RNAs in various host-pathogen models, particularly in crucial agricultural pests and medically significant vectors like the Aedes aegypti, responsible for transmitting dengue and Zika viruses. My previous project, aimed at exploring the function of Oryctes rhinoceros nudivirus in the biological control of the coconut rhinoceros beetle in the Pacific Islands, has substantially enhanced our comprehension of this invasive pest within the framework of an offshore biosecurity strategy. By establishing industry partnerships and securing funding to improve the Australian sugar industry, one of Australia's largest agricultural sectors, I have been able to focus on entomopathogenic viruses that affect root-feeding pests in sugarcane.

Qualifications

  • Doctor of Philosophy, The University of Queensland

Publications

View all Publications

Available Projects

  • Australia's $1.7 billion sugar industry faces a significant threat from severe root-feeding pests, such as canegrubs and soldier flies. The absence of effective control strategies for soldier flies, and the industry's heavy dependence on insecticides for canegrub control has led to detrimental impacts on both the industry and the broader environment, and it is not sustainable. The primary objective of this industry-funded project is to discover and characterize novel entomopathogenic viruses, with the ultimate aim of developing innovative tools for the efficient, and sustainable long-term biological management of these two primary pests.

    The successful candidate will receive a PhD scholarship and work alongside the project team to undertake a comprehensive assessment of the efficacy of recently identified insect-pathogenic viruses against these pests. Utilizing metagenomics, the student will identify novel entomopathogenic viruses within target pest populations, evaluate their prevalence and determine their pathogenicity against soldier fly and canegrub as appropriate. The research will enhance our understanding of the interactions between these viruses and their hosts and has the potential lead to the identification of new biological control agents.

  • We are developing a vector-enabled metagenomics survey to investigate the diversity of plant viruses and identify any novel viruses posing a biosecurity risk to the Australian agricultural sector. Additionally, we aim to explore the biodiversity of insect-specific and entomopathogenic viruses through these surveys. The project involves collecting highly mobile insects with greater diversity and geographical distribution to enhance our understanding of plant viral prevalence and distribution across the region. Drones are being used as a sampling tool due to their advantages over traditional methods, such as nets and traps. Drones can access remote areas that are difficult to reach on foot, and they can sample large areas of land quickly and efficiently.

    Skills in molecular biology for RNA and DNA extraction, bioinformatics for analysing next-generation sequencing data, and entomology are essential for this project. It is open for short-term research students, honors students, and PhD candidates. PhD applicants should apply for UQ scholarships to commence their study.

View all Available Projects

Publications

Featured Publications

Book Chapter

  • Hussain, M., Etebari, K. and Asgari, S. (2016). Functions of small RNAs in mosquitoes. Progress in Mosquito Research. (pp. 189-222) edited by Alexander S. Raikhel. London, United Kingdom: Academic Press. doi: 10.1016/bs.aiip.2016.04.001

Journal Article

Other Outputs

PhD and MPhil Supervision

Current Supervision

Possible Research Projects

Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.

  • Australia's $1.7 billion sugar industry faces a significant threat from severe root-feeding pests, such as canegrubs and soldier flies. The absence of effective control strategies for soldier flies, and the industry's heavy dependence on insecticides for canegrub control has led to detrimental impacts on both the industry and the broader environment, and it is not sustainable. The primary objective of this industry-funded project is to discover and characterize novel entomopathogenic viruses, with the ultimate aim of developing innovative tools for the efficient, and sustainable long-term biological management of these two primary pests.

    The successful candidate will receive a PhD scholarship and work alongside the project team to undertake a comprehensive assessment of the efficacy of recently identified insect-pathogenic viruses against these pests. Utilizing metagenomics, the student will identify novel entomopathogenic viruses within target pest populations, evaluate their prevalence and determine their pathogenicity against soldier fly and canegrub as appropriate. The research will enhance our understanding of the interactions between these viruses and their hosts and has the potential lead to the identification of new biological control agents.

  • We are developing a vector-enabled metagenomics survey to investigate the diversity of plant viruses and identify any novel viruses posing a biosecurity risk to the Australian agricultural sector. Additionally, we aim to explore the biodiversity of insect-specific and entomopathogenic viruses through these surveys. The project involves collecting highly mobile insects with greater diversity and geographical distribution to enhance our understanding of plant viral prevalence and distribution across the region. Drones are being used as a sampling tool due to their advantages over traditional methods, such as nets and traps. Drones can access remote areas that are difficult to reach on foot, and they can sample large areas of land quickly and efficiently.

    Skills in molecular biology for RNA and DNA extraction, bioinformatics for analysing next-generation sequencing data, and entomology are essential for this project. It is open for short-term research students, honors students, and PhD candidates. PhD applicants should apply for UQ scholarships to commence their study.