A next generation 'smart' superconducting magnet system in persistent mode (2024–2027)

Abstract:
Superconducting magnet devices use splicing, a process required to maintain the persistence of operation. Currently, the formation mechanism of splicing using magnesium diboride superconductor is complex and not technologically robust for industrial magnet manufacturing. This project aims to develop novel, reliable and economical superconducting splicing technologies that can produce an ultra-stable and uniform magnetic field against unexpected power outages. Expected outcomes include the development of advanced green and cryogen free superconducting technologies, which would boost the Australian manufacturing industry through access to multi-billion-dollar global markets for power grids, medical imaging and energy generation and storage.
Grant type:
ARC Linkage Projects
Researchers:
Funded by:
Australian Research Council