Neuronal Control of Adaptive Walking (2022–2025)

Abstract:
This project seeks to understand how signals from the brain control motor circuits so that an animal can adaptively walk across varying terrains in pursuit of its ever-changing goals. It will focus on the fruit fly, Drosophila, as a model. The fly is an agile walker, its nervous system has been almost fully mapped at the synaptic level, and genetic reagents are available to selectively measure or manipulate the activity of single neurons. This project specifically focuses on the circuits that generate forward and backward walking, and switch between the two. It will enhance Australia's capacity in connectome-driven neuroscience research, deliver fundamental insights into neuronal motor control, and inspire the design of more agile robots.
Grant type:
ARC Discovery Projects
Researchers:
Funded by:
Australian Research Council